Lipopolysaccharide prolongs action potential duration in HL-1 mouse cardiomyocytes.
نویسندگان
چکیده
Sepsis has deleterious effects on cardiac function including reduced contractility. We have shown previously that lipopolysaccharides (LPS) directly affect HL-1 cardiac myocytes by inhibiting Ca(2+) regulation and by impairing pacemaker "funny" current, I(f). We now explore further cellular mechanisms whereby LPS inhibits excitability in HL-1 cells. LPS (1 μg/ml) derived from Salmonella enteritidis decreased rate of firing of spontaneous action potentials in HL-1 cells, and it increased their pacemaker potential durations and decreased their rates of depolarization, all measured by whole cell current clamp. LPS also increased action potential durations and decreased their amplitude in cells paced at 1 Hz with 0.1 nA, and 20 min were necessary for maximal effect. LPS decreased the amplitude of a rapidly inactivating inward current attributed to Na(+) and of an outward current attributed to K(+); both were measured by whole cell voltage clamp. The K(+) currents displayed a resurgent outward tail current, which is characteristic of the rapid delayed-rectifier K(+) current, I(Kr). LPS accordingly reduced outward currents measured with pipette Cs(+) substituted for K(+) to isolate I(Kr). E-4031 (1 μM) markedly inhibited I(Kr) in HL-1 cells and also increased action potential duration; however, the direct effects of E-4031 occurred minutes faster than the slow effects of LPS. We conclude that LPS increases action potential duration in HL-1 mouse cardiomyocytes by inhibition of I(Kr) and decreases their rate of firing by inhibition of I(Na.) This protracted time course points toward an intermediary metabolic event, which either decreases available mouse ether-a-go-go (mERG) and Na(+) channels or potentiates their inactivation.
منابع مشابه
Electrophysiological characterization of murine HL-5 atrial cardiomyocytes.
HL-5 cells are cultured murine atrial cardiomyocytes and have been used in studies to address important cellular and molecular questions. However, electrophysiological features of HL-5 cells have not been characterized. In this study, we examined such properties using whole cell patch-clamp techniques. Membrane capacitance of the HL-5 cells was from 8 to 62 pF. The resting membrane potential wa...
متن کاملOverexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes
Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2...
متن کاملS100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products.
Cardiovascular dysfunction as a result of sepsis is the leading cause of death in the critically ill. Cardiomyocytes respond to infectious pathogens with a Toll-like receptor-initiated proinflammatory response in conjunction with a decrease in contractility, although the downstream events linking Toll-like receptor activation and reduced cardiac contractility remain to be elucidated. Using micr...
متن کاملThe mitochondrial Na+-Ca2+ exchanger, NCLX, regulates automaticity of HL-1 cardiomyocytes
Mitochondrial Ca(2+) is known to change dynamically, regulating mitochondrial as well as cellular functions such as energy metabolism and apoptosis. The NCLX gene encodes the mitochondrial Na(+)-Ca(2+) exchanger (NCXmit), a Ca(2+) extrusion system in mitochondria. Here we report that the NCLX regulates automaticity of the HL-1 cardiomyocytes. NCLX knockdown using siRNA resulted in the marked pr...
متن کاملLipopolysaccharides directly decrease Ca2+ oscillations and the hyperpolarization-activated nonselective cation current If in immortalized HL-1 cardiomyocytes.
Lipopolysaccharide (LPS) has been implicated in sepsis-mediated heart failure and chronic cardiac myopathies. We determined that LPS directly and reversibly affects cardiac myocyte function by altering regulation of intracellular Ca2+ concentration ([Ca2+]i) in immortalized cardiomyocytes, HL-1 cells. [Ca2+]i oscillated (<0.4 Hz), displaying slow and transient components. LPS (1 microg/ml), der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 303 8 شماره
صفحات -
تاریخ انتشار 2012